Approximate Estimate for Exact Logistic Regression
نویسندگان
چکیده
منابع مشابه
Performing Exact Logistic Regression with the SAS
Exact logistic regression has become an important analytical technique, especially in the pharmaceutical industry, since the usual asymptotic methods for analyzing small, skewed, or sparse data sets are unreliable. Inference based on enumerating the exact distributions of sufficient statistics for parameters of interest in a logistic regression model, conditional on the remaining parameters, is...
متن کاملelrm: Software Implementing Exact-like Inference for Logistic Regression Models
Exact inference is based on the conditional distribution of the sufficient statistics for the parameters of interest given the observed values for the remaining sufficient statistics. Exact inference for logistic regression can be problematic when data sets are large and the support of the conditional distribution cannot be represented in memory. Additionally, these methods are not widely imple...
متن کاملSample size determination for logistic regression
The problem of sample size estimation is important in medical applications, especially in cases of expensive measurements of immune biomarkers. This paper describes the problem of logistic regression analysis with the sample size determination algorithms, namely the methods of univariate statistics, logistics regression, cross-validation and Bayesian inference. The authors, treating the regr...
متن کاملApproximate Bayesian logistic regression via penalized likelihood by data augmentation
We present a command, penlogit, for approximate Bayesian logistic regression using penalized likelihood estimation via data augmentation. This command automatically adds specific prior-data records to a dataset. These records are computed so that they generate a penalty function for the log-likelihood of a logistic model, which equals (up to an additive constant) a set of independent log prior ...
متن کاملPerforming Exact Logistic Regression with the SAS R System
Exact logistic regression has become an important analytical technique, especially in the pharmaceutical industry, since the usual asymptotic methods for analyzing small, skewed, or sparse data sets are unreliable. Inference based on enumerating the exact distributions of sufficient statistics for parameters of interest in a logistic regression model, conditional on the remaining parameters, is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese journal of applied statistics
سال: 2007
ISSN: 0285-0370,1883-8081
DOI: 10.5023/jappstat.36.87